

 Volume-5, Issue-9, February-2019 ISSN No: 2349-5677

21

ARCHITECTING AND IMPLEMENTING A MIDDLEWARE FRAMEWORK FOR
SEAMLESS INTEROPERABILITY OF CUSTOM SYSTEMS IN OMNICHANNEL

RETAIL ENVIRONMENTS

Devender Yadav

Abstract

The contemporary retail environment comprises a complex array of channels, touchpoints, and
consumer expectations. Omnichannel strategies, which seek to deliver a cohesive and
consistent experience across all channels, have become essential rather than optional for
businesses. Achieving true omnichannel harmony presents significant technical challenges,
especially in the integration of various systems, including both custom-built and standard off-
the-shelf solutions. This paper examines the design and implementation of a custom
middleware layer, aimed at integrating disparate systems. This solution enables the efficient
transfer of data, allowing retailers to provide a cohesive customer experience. This study
examines the architectural decisions, technological choices, and practical implications of
implementing a middleware solution in a retail context. The focus extends beyond technical
feasibility to include the development of a flexible, scalable, and adaptable solution capable of
evolving with the dynamic demands of the retail sector.

Keywords: Omnichannel Retail, Middleware, System Integration, Data Synchronization, API,
ESB, Microservices, Retail Technology, Customer Experience, Legacy Systems

I. INTRODUCTION
The retail industry is currently experiencing significant transformation. Consider the evolution
of your shopping behaviors over the past ten years. Customers engage with brands through
various channels, including physical stores, websites, mobile applications, social media, and
emerging platforms such as voice assistants. The increase in touchpoints has led to the
emergence of "omnichannel" retail, a strategy aimed at providing a seamless and integrated
experience across all channels.

The concept of omnichannel presents significant advantages: it offers a comprehensive
perspective of the customer, ensures uniform pricing and promotions, facilitates tailored
interactions, and ultimately enhances customer loyalty and sales. However, the situation for
numerous retailers is considerably more intricate. Their operations are typically underpinned
by a diverse array of systems, including legacy systems that are decades old, modern and
advanced technologies, custom-built solutions tailored to specific requirements, and standard
software packages.

 Volume-5, Issue-9, February-2019 ISSN No: 2349-5677

22

The integration of these disparate systems presents a considerable challenge. Consider the
difficulties associated with synchronizing inventory between online and offline channels,
maintaining consistent product information, and developing a comprehensive customer profile
that encompasses interactions from all touchpoints. In the absence of seamless integration,
retailers encounter data silos, operational inefficiencies, and a disjointed customer experience
that fails to meet the standards of an omnichannel approach.

This paper examines the core of this challenge. This study examines the role of a well-designed
and effectively implemented middleware layer as a critical component for achieving
omnichannel success. The middleware functions as a strategic asset rather than merely a
technological component. This middleware functions as a translator and facilitator, enabling
communication and data exchange between systems that were not originally designed for
interoperability.

II. PROBLEM STATEMENT

The primary issue we examine is the fundamental incompatibility and absence of
interoperability among the various systems that support contemporary omnichannel retail
operations. This incompatibility is evident in multiple significant aspects:

1. Data Silos: Data silos result in information being confined to isolated areas, causing an
incomplete and fragmented understanding of customers, inventory, orders, and other
essential business data.

2. Inconsistent Customer Experience: Inconsistent Customer Experience: Disparate systems
frequently lead to inconsistencies in pricing, promotions, product information, and service
levels across various channels, resulting in customer confusion and frustration. This leads to
customers feeling undervalued, and they prefer a more comfortable shopping experience at
their preferred retailers.

3. Operational Inefficiencies: Operational inefficiencies arise from manual data entry,
reconciliation efforts, and the lack of process automation across channels, resulting in
elevated costs and diminished operational agility [1].

4. Limited Real-time Visibility: Limited real-time visibility due to inadequate data
synchronization impedes a retailer's capacity to swiftly adapt to evolving market conditions,
customer requirements, or supply chain disruptions. One may place an online order, only to
subsequently discover that the item is unavailable in the warehouse.

5. Difficulty in Adopting New Technologies: The integration of new technologies or channels
presents challenges when existing systems lack interoperability, resulting in a complex and
time-consuming process. This hinders numerous retailers from innovating and adapting to
future developments [2].

The challenges are exacerbated by the coexistence of custom-built systems, typically developed
internally to meet specific business requirements, alongside standard off-the-shelf solutions,
including Enterprise Resource Planning (ERP) and Customer Relationship Management (CRM)
systems. Custom systems, although designed for specific needs, may pose challenges in

 Volume-5, Issue-9, February-2019 ISSN No: 2349-5677

23

integrating with external systems. Conventional systems often exhibit insufficient flexibility to
adapt to distinct business processes. This analogy illustrates the difficulty of reconciling
incompatible elements.

III. SOLUTION
The proposed solution involves designing and implementing a robust, adaptable middleware
layer that serves as a central component for system integration in an omnichannel retail
environment. This middleware is not designed as a monolithic solution implemented as a
temporary measure. It is a meticulously organized collection of components, each designated a
specific function, collaborating to ensure efficient data flow and process automation. It
resembles a well-coordinated orchestra, in which each section plays a role in achieving overall
harmony, rather than allowing one instrument to dominate.

Key Aspects and Functionalities
1. API-Driven Architecture: The middleware will provide a comprehensive array of

Application Programming Interfaces (APIs). These APIs will function as the standardized
medium for communication and data exchange between various systems [3]. It is essential
to evaluate the most suitable API style for this integration.
a) RESTful APIs: RESTful APIs are typically favored for their simplicity and scalability in

most interactions. Systems will be enabled to request and exchange data through
standard HTTP methods, including GET, POST, PUT, and DELETE. A website verifying
item availability would likely utilize a RESTful API call.

b) GraphQL APIs: GraphQL APIs will be implemented for scenarios that necessitate
complex and flexible data retrieval. This enables clients to specify the exact data
required, thereby minimizing over-fetching and enhancing efficiency. A mobile
application may utilize GraphQL to obtain only the customer's name, recent orders, and
loyalty points, instead of accessing the complete customer profile.

c) SOAP APIs: SOAP APIs, while less prevalent in contemporary architectures, may be
essential for integration with specific legacy systems that depend on this older standard.
Integration with a system that is over 15 years old will likely require the use of SOAP.
The middleware will be designed to manage these interactions, ensuring compatibility
among all systems.

2. Data Transformation and Mapping: The middleware performs a crucial role in managing

the complex processes of data transformation and mapping. Data exists in various formats
and structures across different systems. It is unrealistic to anticipate that they will
immediately communicate in a common language.
a) Format Conversion: The middleware will convert data between multiple formats,

including JSON, XML, CSV, and others. For instance, it may convert data from a JSON
format utilized by an e-commerce platform to an XML format necessary for an older
ERP system [4].

 Volume-5, Issue-9, February-2019 ISSN No: 2349-5677

24

b) Schema Mapping: It will effectively map data fields between systems with varying
schemas, regardless of differences in field names or data types. This guarantees accurate
data transfer and interpretation, even among systems with fundamentally different data
models. Schema mapping functions similarly to language translation, facilitating the
conversion of data between different formats.

c) Data Validation: Data validation is conducted by the middleware prior to data
transmission to verify its integrity and adherence to the receiving system's requirements.

d) Event-Driven Processing: The middleware will utilize an event-driven architecture to
attain real-time responsiveness and agility. This indicates that actions within one system
will elicit corresponding actions in other systems, resulting in a dynamic and
interconnected environment.

e) Event Producers and Consumers: Systems will be classified as event producers, which
generate events, and event consumers, which respond to events. The middleware will
facilitate the event flow between the components.

f) Real-time Updates: The placement of an online order initiates a series of events: the
inventory system is updated instantaneously, the warehouse is alerted to prepare the
shipment, the customer's profile is revised to reflect the purchase history, and a
confirmation email is dispatched, all coordinated by the middleware.

3. Message Queuing: Message queuing mechanisms will be integrated into the middleware to

facilitate reliable and robust communication. Asynchronous communication, enabled by
message queues, is essential [5].
a) Decoupling: Decoupling occurs when message queues enable systems to function

independently and asynchronously. This mitigates bottlenecks and enhances system
resilience, ensuring that a failure in one system does not immediately propagate to
others.

b) Guaranteed Delivery: Message queues provide guaranteed delivery, ensuring that
messages are retained and not lost during periods of system unavailability. They serve
as a buffer, retaining messages until the receiving system is prepared to process them.

c) Popular Options: Technologies such as RabbitMQ, Kafka, and ActiveMQ will be
evaluated for the implementation of message queuing functionality.

4. Microservices Approach: The middleware can be designed using a microservices approach

to improve flexibility and scalability.
a) Independent Services: The functionality of the middleware will be divided into smaller,

independent services that can be developed, deployed, and scaled autonomously. This
facilitates enhanced agility and simplifies maintenance [6].

b) Technology Diversity: Various microservices may be developed using distinct
technologies, selected according to the specific needs of each service.

5. Enterprise Service Bus (ESB) Capabilities: The middleware functions as a central

component of a comprehensive Enterprise Service Bus (ESB) strategy. An ESB offers a

 Volume-5, Issue-9, February-2019 ISSN No: 2349-5677

25

centralized framework for the management and orchestration of interactions among
services. The middleware is capable of managing essential ESB functions, including:
a) Routing: Routing involves the intelligent direction of messages to relevant services

according to established rules or content criteria.
b) Mediation: Mediation involves the adaptation of communication protocols and message

formats between incompatible services.
c) Process Orchestration: Process orchestration involves the definition and management of

intricate business processes that encompass various services and sequential steps [7].
d) Service Management: Service Management involves the assessment of service

performance and availability, alongside the provision of tools for effective lifecycle
management.

IV. ARCHITECTURE
The middleware layer's architecture is modular, scalable, and adaptable to the changing
requirements of omnichannel retail businesses. It utilizes a combination of architectural patterns
and technologies to facilitate seamless integration among diverse systems.

Figure 1: High Level Solution Design of a Middleware

1. API Gateway:

a) Functions as the initial interface for all external requests directed to the middleware.
b) Facilitates interaction between various systems through the provision of RESTful and

GraphQL APIs.
c) Manages authentication, authorization, and rate limiting.
d) Directs requests to the relevant services within the middleware.

2. Middleware Layer:

a) Data Transformation and Mapping: Data transformation and mapping involve
converting data across various formats, such as JSON and XML, and aligning data fields
between systems that utilize distinct schemas.

b) Event-Driven Processing: This component oversees the transmission of events among
systems. The system employs a message queue, such as RabbitMQ or Kafka, to enable
asynchronous communication and guarantee reliable message delivery.

 Volume-5, Issue-9, February-2019 ISSN No: 2349-5677

26

c) Microservices (Optional): The middleware may be decomposed into smaller,
independent microservices to enhance flexibility, scalability, and maintainability. Each
microservice is designated to perform a specific function, including order processing,
inventory management, or customer profile synchronization [8].

d) ESB Capabilities: This component offers routing, mediation, process orchestration, and
service management functionalities, serving as a central hub for service interactions.

3. Integrated Systems:

a) POS System: The in-store point-of-sale system transmits sales data and inventory updates
to the middleware.

b) E-commerce Platform: The online store engages with the middleware to synchronize
orders, customer data, product information, and inventory levels.

c) ERP System: The enterprise resource planning system supplies the middleware with
inventory data, financial information, and additional back-office data [9].

d) CRM System: The customer relationship management system integrates customer data,
interaction history, and loyalty program information with the middleware.

e) WMS: The warehouse management system offers real-time updates regarding inventory
levels, order fulfillment status, and shipping information.

f) Marketing Automation Platform: The Marketing Automation Platform interfaces with
middleware to tailor marketing campaigns according to customer data and behavior.

g) Mobile App: The native mobile application utilizes the middleware's APIs to facilitate a
seamless shopping experience for mobile users, encompassing access to product
information, order tracking, and personalized recommendations.

V. EXAMPLE OF INTEGRATION WORKFLOW: ONLINE ORDER PROCESSING
1. A customer submits an order on the e-commerce platform.
2. The e-commerce platform transmits a "Order Created" event to the middleware through the

API Gateway.
3. The event-driven processing component of the middleware receives the event and

subsequently places it in the message queue.
4. The data transformation and mapping component converts order data from the e-commerce

platform's format to a standardized format utilized within the middleware.
5. The middleware directs the modified order data to the relevant microservices or ESB

components.
6. The order processing microservice updates the ERP system with new order information.
7. The inventory management microservice synchronizes inventory levels across the ERP and

WMS systems.
8. The microservice for customer profile synchronization updates the CRM system with the

purchase history of customers.
9. The WMS is notified to prepare the order for shipment.
10. The middleware transmits order status updates to both the e-commerce platform and the

mobile application, thereby ensuring customer awareness.

 Volume-5, Issue-9, February-2019 ISSN No: 2349-5677

27

This architecture facilitates an uninterrupted data flow among all interconnected systems,
thereby ensuring data consistency, real-time visibility, and a cohesive customer experience
across all channels. It offers the capability to incorporate new systems and adjust to evolving
business needs.

VI. USES
The implemented middleware layer serves various functions within the omnichannel retail
environment, including:
1. Unified Customer Profile: Integrating customer data from various touchpoints into a

singular, comprehensive view to facilitate personalized marketing and service.
2. Real-time Inventory Synchronization: Maintaining precise and current inventory data

across all channels to minimize stockouts and prevent overselling [10].
3. Order Management: Order Management involves optimizing the order fulfillment process

through the integration of online and offline channels, facilitating efficient order routing,
tracking, and delivery.

4. Consistent Pricing and Promotions: Consistent pricing and promotions are essential for
maintaining clarity across all channels, thereby reducing customer confusion and fostering
trust.

5. Personalized Recommendations: Utilizing customer data and browsing history to deliver
tailored product recommendations and offers across various channels.

6. Seamless Returns and Exchanges: Ensuring a uniform and efficient return and exchange
process across all purchasing channels.

7. Click-and-Collect/Buy Online, Pickup In-Store (BOPIS): It involves the integration of
online ordering with in-store inventory, facilitating convenient pickup options for customers.

8. Loyalty Program Integration: Establishing connections among loyalty programs across
various channels to create a cohesive perspective on customer rewards and benefits.

VII. IMPACT
The effective implementation of this middleware layer significantly influences a retailer's
operations and enhances its capacity to provide a compelling omnichannel experience:
1. Enhanced Customer Experience: An integrated experience promotes customer loyalty and

satisfaction. Customers experience a sense of value and comprehension, resulting in
increased repeat business and favorable word-of-mouth referrals.

2. Improved Operational Efficiency: Enhanced operational efficiency is achieved through
automation and real-time data flow, which streamline processes, minimize manual effort,
and elevate overall effectiveness.

3. Increased Sales and Revenue: Consistent pricing, personalized offers, and a seamless
shopping experience can lead to substantial increases in sales and revenue.

4. Better Decision-Making: A unified view of data enhances decision-making for retailers,
enabling more informed choices regarding inventory, marketing, and other essential
business domains.

 Volume-5, Issue-9, February-2019 ISSN No: 2349-5677

28

5. Greater Agility and Innovation: The middleware offers a flexible foundation for integrating
new technologies and channels, allowing retailers to swiftly adapt to changing customer
expectations and market trends.

6. Cost Savings: Automation diminishes the necessity for manual data entry and
reconciliation, leading to cost savings.

7. Competitive Advantage: Retailers that effectively implement omnichannel integration
achieve a notable competitive advantage in the current market landscape.

VIII. SCOPE
This middleware solution integrates various systems commonly present in a retail environment,
including:
1. Point of Sale (POS) Systems: Integration of traditional in-store POS systems with mobile

POS solutions.
2. E-commerce Platforms: E-commerce platforms facilitate the connection of online stores

developed on diverse systems, such as Shopify, Magento, and WooCommerce.
3. ERP Systems: ERP systems integrate with essential business systems that oversee finances,

inventory, and various back-office functions, such as SAP and Oracle.
4. CRM Systems: CRM systems facilitate the integration of customer relationship

management platforms to consolidate customer data and interactions, such as Salesforce
and Microsoft Dynamics.

5. Warehouse Management Systems (WMS): WMS facilitate the integration of systems that
oversee warehouse operations and inventory management.

6. Order Management Systems (OMS): OMS facilitate integration with systems that oversee
the complete order lifecycle.

7. Marketing Automation Platforms: Marketing Automation Platforms: Integration with
systems that facilitate the automation of marketing campaigns and customer segmentation.

8. Social Media Platforms: Social media platforms facilitate the capture of customer
interactions and feedback through engagement with various channels.

9. Mobile Applications: Integrating with native mobile applications to ensure a seamless
experience for mobile shoppers.

10. Third-party Marketplaces: Integration with third-party marketplaces such as Amazon and
eBay facilitates the management of product listings and orders.

IX. CONCLUSION

The pursuit of genuine omnichannel retail is intricate; however, it is a worthwhile endeavor.
The design and implementation of a robust middleware layer outlined in this paper establish a
crucial foundation for success. This solution serves as a strategic enabler, allowing retailers to
address system integration challenges, maximize data potential, and provide a cohesive and
engaging customer experience across all channels.

 Volume-5, Issue-9, February-2019 ISSN No: 2349-5677

29

This approach enables retailers to overcome the constraints of fragmented systems, facilitating
the development of stronger customer relationships, operational optimization, and success in
the dynamic environment of contemporary commerce. The middleware layer serves as a crucial
connection between systems, facilitating advancements in the retail sector. Connecting systems
extends beyond technical integration; it involves establishing a deeper engagement with
customers. This approach enables retailers to fulfill current customer expectations while also
anticipating future needs.

REFERENCES

1. A. D. A. M. S. Project, A Reference Model for Computer Assisted Personalized Approach
(CAPPA): A Framework for Designing and Implementing Personalized Services, 2018.

2. E. Brynjolfsson and A. McAfee, The Second Machine Age: Work, Progress, and Prosperity in
a Time of Brilliant Technologies. New York, NY: W. W. Norton & Company, 2014.

3. A. Zimmermann, K. Schmidt, S. Kahl, L. Wolf, and K. Hinkelmann, "A design method for
service-oriented architectures," in Proceedings of the 16th European Conference on Pattern
Languages of Programs, 2011, pp. 1–12.

4. C. Pautasso, O. Zimmermann, and F. Leymann, "RESTful web services vs. big' web services:
Making the right architectural decision," in Proceedings of the 17th International Conference
on World Wide Web, 2008, pp. 805–814.

5. D. Linthicum, Cloud Computing and SOA Convergence in Your Enterprise: A Step-by-Step
Guide. Addison-Wesley, 2009.

6. E. Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software. Addison-
Wesley, 2004.

7. B. W. Boehm, "A spiral model of software development and enhancement," Computer, vol.
21, no. 5, pp. 61–72, 1988.

8. F. P. Brooks Jr., The Mythical Man-Month: Essays on Software Engineering. Addison-
Wesley, 1995

9. D. L. Parnas, "On the criteria to be used in decomposing systems into modules,"
Communications of the ACM, vol. 15, no. 12, pp. 1053–1058, 1972.

10. D. Rigby, J. Sutherland, and H. Takeuchi, "Embracing agile," Harvard Business Review, vol.
94, no. 5, pp. 40–50, 2016.

