

 Volume-6, Issue-10, 2021 ISSN No: 2349-5677

30

EXPLORING THE SINGLETON DESIGN PATTERN IN C#: CHALLENGES, AND
SOLUTIONS

AzraJabeen Mohamed Ali

Azra.jbn@gmail.com
Independent researcher, California,USA

Abstract

This paper discusses the thorough exploration of the Singleton design pattern.Common and
recurring issues that developers encounter when creating applications or during the software
application lifecycle include object creation and disposal, object-to-object interaction, class
structure that promotes cohesiveness and loose coupling, bug fixes that minimize source code
changes, etc. In order to reduce issues after deployment, design patterns are utilized to address
these often-recurring issues during the development stage. A particular implementation for a
given object-oriented programming problem is suggested by a design pattern. The Singleton
design pattern, for instance, suggests the ideal method to develop a class that can only have
one object if you want to make sure that there is only one instance of the class.The study's
main research question explores when to applysingleton patternand how to apply.It also
provides a thorough analysis of challenges after the implementation of singleton pattern. This
paper is therefore meant to be more development-environment centered and infrastructure
agnostic.Developers and architects who wish to concentrate on code, patterns, and
implementation specifics will find this part most interesting.

Keywords: Singleton, Design patterns, Static, eager initialization, static constructor, Thread
safe, Lazy loading

I. INTRODUCTION
Design Patterns:
A design pattern is a method of problem-solving that can be used in a variety of contexts. It
serves as a blueprint or guideline that offers a consistent method for addressing a certain
issue.Design patterns are a collection of tried-and-true fixes for typical program design issues.
Understanding patterns is helpful to apply object-oriented design concepts to tackle a variety of
difficulties.These patterns are frequently used to enhance code reuse, control software system
complexity, and guarantee best practices are followed.

Patterns are classified based on their goal or objective. Three primary categories of patterns are
Creational patterns, Structural patterns, and Behavioral patterns Fig-1.

 Volume-6, Issue-10, 2021 ISSN No: 2349-5677

31

Fig-1

Creational patterns:
The process of creating items is the subject of creational design patterns, which concentrate on
increasing the system's flexibility and dynamicity in this regard.There are many different kinds
of creative design patterns, such as the Singleton, Factory, Abstract Factory, Builder, and
Prototype patterns.

Structural patterns:
Structural Design Patterns address issues with the composition and assembly of classes and
objects to create more expansive structures that are effective and adaptable. Inheritance is used
by structural class patterns to create interfaces or implementations. There are many different
kinds of structural design patterns, such as the Adapter, Bridge, Composite, Decorator, Façade,
Flyweight and Proxy patterns.

Behavioral patterns:
Algorithms and the distribution of duties among objects are the focus of behavioral patterns. In
addition to describing patterns of objects or classes, behavioral patterns also explain patterns of
communication between them. Complex control flows that are challenging to understand at

 Volume-6, Issue-10, 2021 ISSN No: 2349-5677

32

runtime are characterized by these patterns. There are many different kinds of behavioral
design patterns, such as the Chain of responsibility, Command, Iterator, Mediator,Memento,
Observer, State, Strategy, Template Method and Visitor patterns.

Singleton pattern:
This paper focuses on Singleton pattern which is one of the kinds of creational design
pattern.One of the most well-known patterns in software engineering is the singleton pattern. A
singleton is essentially a class that only permits the creation of a single instance of itself and
typically provides straightforward access to that instance.

When to apply the singleton pattern:
It's perfect for situations where centralized control is needed, such asdatabase connection, a
global configuration, a logging system, or a caching system. The singleton is the best option
where there is only one instance of a particular object in the application and many modules
need to access it. The singleton obviously won't function if the class has more than one instance.

How to apply the singleton pattern:
In C#, a singleton pattern can be implemented in a variety of ways.
1. Singleton with no thread safe,
2. Singleton with thread safe.
3. Singleton with thread safe by double check lock
4. Singleton with multi thread without lock
5. Singleton using Lazy<T>

Singleton with no thread safe:

 Fig-2 In the below implementation of singleton pattern with no thread safe feature has
certaincharacteristics like private constructor, static instance, lazy instantiation, and no
thread safety.

 There is only one private, parameterless constructor “Singleton_Sample”. This stops it
from being instantiated by other classes, which would be against the pattern and which
also prohibits subclassing; if a singleton may be subclassed twice, the pattern is broken if
each of those subclasses is able to generate an instance.

 If a single instance of a base type is required but unsure of the exact type until runtime,
then factory pattern is the best choice.

 The “_instance” variable is declared as a static field. This ensures that the instance is
shared across all calls to the Instance property.

 The instance of “Singleton_Sample” is only created when Instance is accessed for the
first time.

 This implementation's primary flaw is that it lacks thread safety. In a multi-threaded
application, think about the following situation:

 In order to build the instance, Thread A first determines whether _instance is null.

 Because Thread A hasn't finished the instantiation yet, Thread B follows suit and
discovers that _instance is null.

 Volume-6, Issue-10, 2021 ISSN No: 2349-5677

33

 The Singleton principle will be broken since two distinct instances of the same
“Singleton_Sample” object will be produced when both threads instantiate it.

Fig-2

Singleton with thread safe:
The code that follows is thread-safe.To provide thread safety,a static readonly object (lockObj) is
used to synchronize access to the Instance property.It guarantees that only one thread will
generate an instance and fixes the memory barrier problem.The code can contain just one thread
at a time. When the second thread enters it, the expression will evaluate as false because the first
thread will have already generated the object.This resolves the problem of thread safety.
However, because only one thread may use the Instance property at once, it is sluggish.

 Volume-6, Issue-10, 2021 ISSN No: 2349-5677

34

Fig-3

Singleton with thread safe without lock:
Fig-4 This implementation ensures thread safety and eager initialization.This kind of
implementation only runs once per application because it has a static constructor.The _instance
is created eagerly when the class is first loaded (due to private static readonly Singleton_Sample
_instance = new Singleton_Sample();) Eager initialization is the process of creating the instance
before any thread accesses it, at the moment the class is first accessed. Because the Common
Language Runtime (CLR) makes sure that static fields are initialized just once in a thread-safe
way when the class is loaded, this is thread-safe.The field _instance is marked as readonly,
which means it can only be assigned once — in this case, during initialization. This ensures that
the instance cannot be reassigned.Eager initialization ensures that the instance is created when
the class is first used, and since static constructors are thread-safe in .NET, there is no risk of
multiple threads creating separate instances.The Instance property is a public static property
that gives access to the singleton instance. This guarantees that there is a single instance used
throughout the application's lifetime.

 Volume-6, Issue-10, 2021 ISSN No: 2349-5677

35

Fig-4

Singleton using Lazy<T>:
Fig-5 The below implementation shows the Singleton Pattern using lazy loading. Lazy<T>
guarantees that the creation procedure is thread-safe and that the singleton instance is only
produced when it is first accessedand it can be reused by later threads without requiring a new
instance to be created.This makes the code clearer and more effective by doing away with the
requirement for manual locking or synchronization.Lazy initialization is provided by the Lazy
type, which means that the instance of Singleton_Sample is only produced upon the
initialization of the Value property of _instance.The thread-safety is taken care of by the Lazy
class. It makes use of LazyThreadSafetyMode.ExecutionAndPublication by default, which
guarantees that only one thread can construct the instance and that all other threads will receive
the same instance after it is produced.For a thread-safe singleton with lazy initialization, Lazy is
the perfect choice. Without the need for intricate locking mechanisms or manual
synchronization, it is straightforward, effective, and thread-safe.

 Volume-6, Issue-10, 2021 ISSN No: 2349-5677

36

Fig-5

Can we bypass Singelton pattern by any techniques?
Yes we can by various techniques. Even though we avoided multiple instance creation of
singleton class by using Double checking loack or Eager instance creation, instances can still be
created using

 Cloning: Implementing ICloneable or MemberwiseClone.

 Serialization: Serializing or deserializing the singleton object.

 Reflection: Using reflection to access private constructors and fields.

 Inheritance or subclassing:

Solutions to avoid Singleton instance creation by cloning:
We can prevent cloning using

 ICloneable Interface

 MemberwiseClone method.

The Clone method or MemberwiseClone method can be explicitly overridden to throw an error
if there is a singleton instance creation using clone, preventing the creation of extra instances of
the class. By doing this, the integrity of the Singleton pattern will be preserved and any effort to
clone the Singleton instance will be prevented.The below implementation shows the prevention
usingICloneable interface and override the Clone method in Singleton class to throw an
exception when cloning is attempted. This will prevent the creation of a new instance via
cloning Fig-6

 Volume-6, Issue-10, 2021 ISSN No: 2349-5677

37

Fig-6

By overriding the Clone and MemberwiseClone methods—which are frequently used for object
copying—to generate exceptions, we make sure that the Singleton pattern is maintained and
that no new instances are created.

Solutions to avoid Singleton instance creation by serialization:
The Singleton pattern must be preserved throughout the deserialization procedure in order to
avoid the serialization and deserialization of multiple instances of a Singleton class. When
deserializing an object in C#, serialization usually generates a new instance of a class, avoiding
the Singleton control.
By default, when you serialize and deserialize a Singleton class, a new instance of the class is
created during the deserialization process. This breaks the Singleton pattern by creating a
second instance of the class.
During serialization and deserialization, it can be avoided from creating numerous instances by
using SerializationInfo or overriding the OnDeserialized method which stops a new instance
from being created by deserialization and makes sure that the Singleton instance is always
returned.
Marking a method with the OnDeserialized attribute—which will be invoked once an object is

 Volume-6, Issue-10, 2021 ISSN No: 2349-5677

38

deserialized—is the easiest way to deal with this. The deserialized object can be set to the
current Singleton instance using this method.
After deserialization, the ReferenceEquals(singleton1, singleton2) check will return True,
meaning the deserialized instance is the same as the original Singleton instance.

Fig-7

 Volume-6, Issue-10, 2021 ISSN No: 2349-5677

39

Solutions to avoid Singleton instance creation by Subclass or Inheritance:
By providing private constructor, a subclass cannot be instantiated to create another instance.

Solutions to avoid Singleton instance creation by Reflection:
Using reflection, it's possible to create a new instance of a class even if the constructor is private,
thus violating the Singleton pattern. By below approache it is possible to stop the instance
creation.
If accessed by reflection, raise an exception in the constructor.
Fig-8 If a Singleton instance is accessed by reflection, you can throw an exception in the
constructor to stop it from being created. This can be accomplished by examining the approach
that is being used at the moment, which the system can identify.Introspection.The function
MethodBase.GetCurrentMethod(). The constructor of the Singleton_Sample class is private, as
expected in the Singleton pattern. This restricts external instantiation of the class. Inside the
constructor, MethodBase.GetCurrentMethod().DeclaringType checks the current method being
executed. If it's not the Singleton_Sample constructor, it indicates that the constructor was called
via reflection. If the constructor is accessed via reflection, it throws an
InvalidOperationException to prevent creating a new instance. In the Main method, an attempt
is made to create a new instance of the Singleton via reflection. This will trigger the exception.

Fig-8

 Volume-6, Issue-10, 2021 ISSN No: 2349-5677

40

When to Avoid Singleton Pattern:
When there is no need global access or global state, then using dependency injection or a factory
pattern would be more appropriate than Singleton pattern.When working in a multithreaded
environment, the Singleton pattern may result in difficult-to-resolve synchronization or race
situation issues.

II. CONCLUSION
The singleton design offers a global point of access and is simple to implement. It guarantees a
single instance and is helpful for shared resources like as configuration, caching, and logging.
Lazy initialization is used to postpone the use of resources.To avoid the drawbacks of the
Singleton pattern, proper design patterns like factories or dependency injection may
occasionally be preferable.

REFERENCES

1. Rabeeh Abla “.Net Design
Patterns”https://www.codeproject.com/Articles/23065/NET-Design-Patterns(Jan 13,
2009)

2. Refactoring.Guru “What's a design pattern?” https://refactoring.guru/design-
patterns/what-is-pattern (2007)

3. Jon Skeet“C# in Depth,“Manning Publications,2019
4. Sourav Kayal “Exploring Design Pattern for Dummies,”https://www.c-

sharpcorner.com/ebooks/exploring-design-pattern-for-dummies(Oct 03, 2013)
5. Mahesh Alle “Singleton Design Pattern In C#“https://www.c-

sharpcorner.com/UploadFile/8911c4/singleton-design-pattern-in-C-Sharp/ (Jun 2020)
6. Dot net tutorials “Singleton Design Pattern in C#”

https://dotnettutorials.net/lesson/singleton-design-pattern/(2019)
7. Microsoft “Design Patterns: Singleton“ https://learn.microsoft.com/en-

us/shows/visual-studio-toolbox/design-patterns-singleton (Aug 08, 2017)
8. Eric Freeman, Elisabeth Robson, Bert Bates, Kathy Sierra “Head First Design Patterns: A

Brain-Friendly Guide”, O'Reilly Media, Nov 30, 2004
9. Sungu Hasan Emrah “Singleton Pattern Implemented in C#”

https://dev.to/emrahsungu/singleton-pattern-implemented-in-c-e9(Oct 14, 2019)

