

 Volume-6, Issue-5, October-2019 ISSN No: 2349-5677

20

HTTPS ENFORCEMENT FOR DISTRIBUTED REST APIS FOR END-TO-END DATA
PROTECTION

Venkata Baladari

Software Developer, Tekgroup LLC
vrssp.baladari@gmail.com

Newark, Delaware

Abstract

In the modern era of distributed systems and cloud architecture, RESTful APIs have become the
essential foundation of contemporary web applications, facilitating effortless data interchange
across various platforms. Despite their widespread use, APIs have become prime targets for
cyberattacks, underscoring the importance of implementing robust security measures. This study
concentrates on implementing HTTPS in distributed REST APIs to protect against potential
threats like man-in-the-middle (MITM) attacks, data breaches, and unauthorized access, thereby
providing a comprehensive data security framework. This research examines the intricacies of
deploying HTTPS in distributed systems, tackling obstacles associated with certificate
administration, load distribution, and API gateway integration. The proposal involves a
structured system that employs TLS encryption, mutual verification, and automated certificate
renewal to ensure data integrity and confidentiality, while also examining trade-offs in
performance and providing suggestions to reduce latency and system load. The paper employs case
studies, simulations, and security evaluations to show that regular HTTPS enforcement improves
the overall security position of dispersed systems. The insights aim to provide developers, security
architects, and organizations with practical approaches for constructing robust, expandable, and
secure REST API systems within changing network settings.

Index Terms—REST API, API endpoints, HTTPS, Microservices, API gateway

I. INTRODUCTION
A. Background and Motivation
The growing reliance on distributed systems and microservices has heightened the importance of
REST APIs in managing data movement across networks. This reliance also heightens the risk of
cyberattacks on communication channels that are not properly secured. HTTPS has been widely
regarded as the standard for secure internet communication, yet ensuring its consistent application
across all API interfaces still poses a considerable issue, particularly in intricate, networked
systems.

Man-in-the-Middle (MITM) attacks, and data breaches have shown that unsecured API endpoints
can be taken advantage of to gain unauthorized access to sensitive information [1]. Regulatory
frameworks like General Data Protection Regulation (GDPR), Health Insurance Portability and
Accountability Act (HIPAA), and Payment Card Industry Data Security Standard (PCI DSS)
stipulate robust data protection protocols, which in turn underscores the requirement for secure
API communication methods [2].

 Volume-6, Issue-5, October-2019 ISSN No: 2349-5677

21

B. Problem Statement
Despite the established significance of HTTPS in safeguarding data transmissions, numerous REST
API implementations fall short in consistently enforcing it throughout distributed systems. This
inconsistency results in potential vulnerabilities, leaving sensitive data open to interception and
manipulation. Key challenges include:

● Inconsistent HTTPS enforcement among microservices and API gateways.
● Partial HTTPS adoption is driven by concerns over performance overhead.
● Complexities in distributed cloud settings arise from their configurations.
● Challenges arise in managing certificates and implementing Secure Sockets Layer (SSL)

certificates or Transport Layer Security (TLS) protocols across multiple, changing API
endpoints.

C. Research Objectives
The primary objectives of this study are:

1. Identifying prevalent weaknesses in distributed REST APIs that result from inadequate
HTTPS implementation.

2. Developing a thorough framework for uniform HTTPS implementation across distributed
RESTful systems.

3. Assessing the effects of HTTPS on system performance, scalability, and security within
complex multi-cloud and hybrid ecosystems.

4. Developing guidelines for the management of certificates, the setup of API gateways, and
the encryption of traffic.

5. Ensuring adherence to global data protection regulations, such as GDPR, HIPAA, and PCI
DSS, via secure application programming interface (API) methods [2].

II. LITERATURE REVIEW

A. REST API Security Challenges
● Despite the widespread use of REST APIs in modern web applications, these APIs

frequently contain security vulnerabilities that can be exploited by attackers if not properly
secured.

● Sensitive data transmitted via REST APIs can be vulnerable to interception when not
encrypted, making it susceptible to man-in-the-middle (MITM) attacks. API calls without
encryption reveal sensitive data to unauthorized parties [1].

● Weak authentication methods, including the use of hard-coded API keys or inadequate
token handling, can permit unauthorized users to obtain access to APIs. Inadequate
implementation of OAuth 2.0 or JWT (JSON Web Tokens) can also lead to security
vulnerabilities [3],[4].

● Failing to validate user input leaves REST APIs vulnerable to SQL injection, cross-site
scripting (XSS), and other types of code injection attacks, which could compromise the
entire system [5].

● Without adequate rate limiting and throttling, APIs are vulnerable to denial-of-service
(DoS) and brute-force attacks, which occur when attackers overwhelm the system with
excessive requests, resulting in service disruptions [6],[7].

● Inadequate API monitoring and logging allow malicious activities to potentially go
unnoticed without ongoing observation. Log data is essential for detecting security
breaches and conducting post-incident forensic analysis.

 Volume-6, Issue-5, October-2019 ISSN No: 2349-5677

22

B. Importance of HTTPS
● Using Transport Layer Security (TLS), HTTPS encrypts data sent between the client and

server, thereby preventing unauthorized parties from accessing or altering sensitive
information.

● Preventing Man-in-the-Middle (MITM) attacks relies on HTTPS, which authenticates the
server using SSL/TLS certificates to guarantee that data is transmitted to the intended
recipient [1].

● Meeting regulatory standards: Numerous data protection regulations, including GDPR,
HIPAA, and PCI DSS, necessitate the application of encryption to data in transit. HTTPS is
the standard protocol to fulfill these compliance requirements [2].

● Browsers and platforms frequently alert users to unsecured HTTP endpoints, which can
discourage them from proceeding. Establishing a secure HTTPS connection can instead
foster trust with users.

III. METHODOLOGY

A. Research Approach
This study utilizes a design-based methodology in conjunction with empirical testing to assess the
effect of HTTPS enforcement on system performance and security. The procedure entails:

● A comprehensive examination of existing HTTPS enforcement tactics, REST API security
standards, and optimal practices in distributed systems.

● Current REST API implementations are prone to security vulnerabilities, performance
issues, and architectural constraints due to inconsistent HTTPS application.

● Developing a secure HTTPS enforcement architecture requires addressing issues related to
certificate management, load balancing, and gateway integration.

● The approach involves establishing a proof-of-concept system within a multi-cloud setting
to evaluate the framework's performance in a genuine operational scenario, as deployed in
a real-world environment.

● This process involves the use of performance metrics and security evaluations to assess
system response times, data reliability, and immunity to typical cyber threats such as
MITM attacks and data breaches [1].

● Validating the framework involves conducting real-world case studies and simulations to
assess its scalability, reliability, and security.

B. System Architecture

1. Key Components
● The API Gateway serves as a solitary entry point, implementing HTTPS and overseeing

traffic routing and authentication processes.
● A load balancer disperses network traffic uniformly across multiple servers, also

enabling secure socket layer termination.
● A Certificate Authority (CA) is responsible for managing Secure Sockets Layer (SSL)

certificates or Transport Layer Security (TLS) certificates, as well as automating their
renewal process [8].

● Each microservice implements HTTPS internally to provide end-to-end encryption.
● The client application securely communicates using HTTPS, with mutual TLS (mTLS)

 Volume-6, Issue-5, October-2019 ISSN No: 2349-5677

23

support available when necessary.
● Monitoring tools track performance, log API activities, and identify security threats in

real-time.

2. Workflow Summary
● The API gateway receives HTTPS requests from the clients.
● The gateway authenticates certificates and routes requests to the backend microservices.
● Internal microservices exchange data through secure, encrypted networks.
● Client responses are securely routed back to the clients.

C. Tools and Technologies

1. Development & API Management
● Node.js and Spring Boot For constructing RESTful APIs.
● The Swagger API documentation.
● Postman is commonly used for API testing.

2. Security & Encryption
● SSL/TLS certificate management through services such as Let's Encrypt and AWS

Certificate Manager.
● Nginx and Kong API Gateway implement HTTPS enforcement and traffic control.
● The technologies used for secure data transmission and user authentication include TLS

1.3, OAuth 2.0, and JWT [3][4].
3. Cloud & Deployment

● Deploying a distributed environment is typically done via AWS or Google Cloud.
● Containerization and microservice orchestration are achieved through the use of Docker

and Kubernetes [10].
4. Monitoring & Testing

● Prometheus and Grafana for monitoring Performance [9].
● Wireshark is a tool for analyzing network traffic [11].
● OWASP ZAP is used for vulnerability testing [12].
● Apache JMeter is used for load and performance testing.

IV. CHALLENGES IN HTTPS ENFORCEMENT AND SOLUTION

A. Certificate Management
Challenges
Managing SSL/TLS certificates across complex distributed systems is a difficult task because it
requires ongoing renewals, secure storage, and simultaneous synchronization across numerous
microservices and load balancers. Certificates that have expired or are misconfigured can cause
service disruptions, whereas insecure storage of private keys elevates the risk of security breaches.

Solution

● Use tools like Let's Encrypt or AWS Certificate Manager to automate the process of issuing
and renewing certificates [14].

● Utilize a centralized Key Management Service (KMS) to securely store private keys [13].
● Utilize wildcard or SAN certificates to streamline the management of multiple domains

and APIs.
● Install and utilize certificate monitoring software to prevent expiration and

 Volume-6, Issue-5, October-2019 ISSN No: 2349-5677

24

misconfigurations.

B. Load Balancing
Challenges
Implementing HTTPS introduces added complexity to load balancers, particularly when it comes
to SSL termination and full end-to-end encryption. Terminating SSL at the load balancer
streamlines traffic management, but this can compromise internal communication if it's not re-
encrypted afterwards. Balancing encrypted traffic can also cause delays and make session
persistence more complicated.

Fig. 1. AWS ELB accessed from https://asardana.com/2017/02/24/aws-elastic-load-

balancer/

Solution
● For sensitive data, consider using SSL passthrough or end-to-end encryption, thereby

providing encryption from the client to the backend services [15].
● Utilize load balancers such as NGINX, HAProxy, or AWS Elastic Load Balancer, which

feature integrated HTTPS capabilities [16].
● Enable sticky sessions where necessary to preserve consistent client-server connections.
● Decrease performance overhead by leveraging TLS session resumption and HTTP/2 for a

shorter handshake process [17][18].

C. API Gateway Integration
Challenges
API gateways streamline HTTPS implementation but can also become potential bottlenecks or
critical single points of failure. Implementing a uniform HTTPS policy across multiple gateways,
microservices, and external integrations contributes to increased complexity. Integrating with
legacy systems that do not support HTTPS also raises compatibility concerns.

 Volume-6, Issue-5, October-2019 ISSN No: 2349-5677

25

Fig. 2. AWS API Gateway Integration accessed from

https://aws.amazon.com/blogs/compute/how-to-provision-complex-on-demand-
infrastructures-by-using-amazon-api-gateway-and-aws-lambda/

Solution

● Utilize gateways such as Kong, NGINX, or AWS API Gateway, which natively support
HTTPS and provide scalability .

● Implement mutual Transport Layer Security (mTLS) to verify both clients and servers for
highly sensitive data exchange.

● Adding direct security features at the gateway includes rate limiting, IP whitelisting, and
API key management.

● Using auto-scaling and redundancy can help prevent gateways from becoming
performance bottlenecks.

D. Performance Considerations
Challenges
Implementing HTTPS causes delays due to TLS handshakes and results in higher CPU and
memory usage for encryption and decryption operations. This can also interfere with caching
systems, resulting in increased server workloads and delayed response times.

Solution

● Minimizing latency can be achieved by implementing TLS session resumption and utilizing
HTTP/2 [17],[18].

● Redirecting encryption tasks to hardware boosters (for instance, SSL offloading on load
balancers) to decrease CPU workload.

● Utilize Content Delivery Networks (CDNs) that offer HTTPS to optimize caching [19].
● Regularly track system performance using tools such as Prometheus and Grafana, and

make adjustments to resource allocation as necessary [9].

V. PROPOSED FRAMEWORK
A. Design Principles

● Design APIs with a modular architecture to enable scalability and facilitate reuse across
multiple applications and platforms. This method facilitates the autonomous creation and
implementation of services, thereby increasing the system's adaptability.

● Incorporating security measures at the initial stages of development, APIs can be
safeguarded against unauthorized access and data breaches. Implementing security
protocols involves setting up authentication, authorization, and encryption systems.

● Implementing a unified data framework and established communication protocols is

 Volume-6, Issue-5, October-2019 ISSN No: 2349-5677

26

essential for achieving consistency and seamless interaction among various API elements
and programs. This practice streamlines integration and maintenance tasks.

B. TLS Implementation

● For optimal security and performance, use the current stable version of TLS protocol.
● Establish a comprehensive system for managing SSL/TLS certificates, which should

include automated procedures for issuance, renewal, and revocation. This ensures that all
endpoints retain valid and trusted certificates, thereby diminishing the threat of security
breaches.

● Optimizing Performance: Adjust TLS settings to strike a balance between security and
performance. This involves enabling session resumption and optimising cipher suites to
decrease latency and resource usage.

C. Automation Strategies

● Automated certificate management: Leverage tools and services that automatically manage
the issuance, renewal, and revocation of SSL/TLS certificates. It decreases bureaucratic
hassle and reduces the likelihood of mistakes made by people.

● Implement continuous security monitoring by deploying automated systems to track API
traffic and identify potential security vulnerabilities and threats. Real-time analysis
facilitates rapid responses to incidents, thereby strengthening the overall security position.

● Automate the deployment and configuration of API infrastructure by implementing
Infrastructure as Code (IaC) best practices. This guarantees uniformity across different
settings and enables swift scaling and recovery procedures [20].

VI. CONCLUSION

Ensuring end-to-end protection for data is critical, requiring HTTPS implementation across
distributed REST APIs. This research has examined the key elements of HTTPS enforcement,
encompassing design principles, TLS implementation, automation techniques, and regulatory
compliance standards. By following these guidelines, companies can boost the security and
dependability of their API systems.

A. Summary
The study highlights the significance of designing an API with a modular and scalable structure,
incorporating security features right from the beginning, and utilizing established protocols to
guarantee consistency. Implementing TLS in an effective manner, incorporating the most current
protocol versions and sound certificate administration practices, is essential for safeguarding data
transfer. Implementing automation strategies like automated certificate lifecycle management and
continuous security monitoring decreases administrative burdens and boosts system stability.
Following established standards and industry best practices, guarantees that APIs satisfy the
necessary security and operational standards.

B. Practical Implications
The research highlights the importance of integrating security measures from the outset in the
creation of APIs for developers and practitioners. Implementing automated systems for certificate
management and security monitoring can substantially decrease the likelihood of human mistakes

 Volume-6, Issue-5, October-2019 ISSN No: 2349-5677

27

and potential weaknesses. Compliance with established standards not only guarantees alignment
with laws and regulations but also promotes trust among users and stakeholders.

C. Future Work
This study supplies a thorough framework for enforcing HTTPS in distributed REST APIs, yet
further research may investigate the integration of developing technologies, including machine
learning, to strengthen security surveillance and threat identification. Investigating the
performance effects of different TLS configurations in different settings can provide more in-depth
information about how to balance both security and efficiency.

REFERENCES

1. Hintea, C. Taramonli, R. Bird, and R. Yusuf, "Forensic Analysis of Smartphone
Applications for Privacy Leakage," in Proceedings of the Annual ADFSL Conference on
Digital Forensics, Security and Law, 2016, pp. 7.

2. Hashmi, A. Ranjan, and A. Anand, "Security and Compliance Management in Cloud
Computing," in Proc. 3rd Int. Conf. on Computers and Management (ICCM), Jaipur,
Rajasthan, India, Jan. 2018, vol. 7, Apex Institute of Engineering and Technology.

3. M. Jones, J. Bradley, and N. Sakimura, JSON Web Token (JWT), RFC 7519, Internet
Engineering Task Force (IETF), May 2015.

4. M. Roda, "OpenID Connect Opens the Door to SAS® Viya® APIs," in Proceedings of the
SAS Global Forum 2018 Conference, Paper SAS1737-2018, SAS Institute Inc., 2018.

5. E. Erturk and A. Rajan, "Web Vulnerability Scanners: A Case Study," arXiv preprint
arXiv:1706.08017, 2017.

6. Monika Malik et al, International Journal of Computer Science and Mobile Computing,
Vol.4 Issue.6, June- 2015, pg. 260-265

7. M. Farik and A. B. M. S. Ali, "Analysis of default passwords in routers against brute-force
attack," International Journal of Scientific & Technology Research, vol. 4, no. 9, pp. 341-345,
Sept. 2015.

8. V. Hawanna, V. Y. Kulkarni, and R. A. Rane, "Survey of X.509 Certificates Trust
Evaluation," International Journal of Software & Hardware Research in Engineering, vol. 3,
no. 11, pp. 54-60, Nov. 2015.

9. E. Casalicchio and V. Perciballi, "Measuring Docker Performance: What a Mess!!!," in
Proceedings of the 8th ACM/SPEC International Conference on Performance Engineering
Companion (ICPE '17 Companion), New York, NY, USA: Association for Computing
Machinery, 2017, pp. 11–16.

10. M. T. Chung, N. Quang-Hung, M.-T. Nguyen, and N. Thoai, "Using Docker in high
performance computing applications," in Proceedings of the 2016 IEEE Sixth International
Conference on Communications and Electronics (ICCE), Ha-Long, Vietnam, 2016, pp. 52-
57.

11. N. A. Ben-Eid, "Ethical Network Monitoring Using Wireshark and Colasoft Capsa as
Sniffing Tools," International Journal of Advanced Research in Computer and
Communication Engineering, vol. 4, no. 3, pp. 471-475, Mar. 2015.

12. A. L. Jennifer and R. S. Kumaran, "Development of Vulnerability Scanner," International
Research Journal of Engineering and Technology (IRJET), vol. 5, no. 7, pp. 1278, July 2018.

13. Amazon Web Services, Amazon Web Services: Risk and Compliance, Dec. 2015.

 Volume-6, Issue-5, October-2019 ISSN No: 2349-5677

28

14. CIS Amazon Web Services Three-tier Web Architecture Benchmark v1.0.0, Center for
Internet Security, Nov. 9, 2016.

15. L. M. Joshi, "Secure Client-Server Communication through SSL," International Journal of
Computer Applications, vol. 175, no. 5, pp. 39-43, Oct. 2017.

16. S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind, D.
Muthukumaran, D. O’Keeffe, M. L. Stillwell, D. Goltzsche, D. Eyers, R. Kapitza, P.
Pietzuch, and C. Fetzer, "SCONE: Secure Linux Containers with Intel SGX," in Proceedings
of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI
'16), Savannah, GA, USA, Nov. 2016.

17. D. Springall, Z. Durumeric, and J. A. Halderman, "Measuring the security harm of TLS
crypto shortcuts," in Proceedings of the 2016 Internet Measurement Conference (IMC '16),
New York, NY, USA: Association for Computing Machinery, 2016, pp. 33–47.

18. B. Dimitrova and A. Mileva, "Steganography of Hypertext Transfer Protocol Version 2
(HTTP/2)," Journal of Computer and Communications, vol. 5, no. 5, 2017.

19. M. S. Aljumaily, "Content Delivery Networks Architecture, Features, and Benefits," Apr.
2016.

20. M. Artac, T. Borovšak, E. Di Nitto, M. Guerriero, and D. A. Tamburri, "DevOps:
Introducing Infrastructure-as-Code," in 2017 IEEE/ACM 39th International Conference on
Software Engineering Companion (ICSE-C), Buenos Aires, Argentina, 2017, pp. 497-498.

